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A new btegro-differential equation is derived for steady free-surface waves. 
Numerical solutions of this equation for periodic gravity-capillary waves on a fluid 
of infinite depth are presented. For the two limiting cases of gravity waves and 
capillary waves, our results are in cxcellent agreement with previous calculations. 
For gravity-capillary waves, detailed calculations are performed near the wave- 
number a t  which the classical second-order perturbation solution breaks down. Our 
calculations yield two solutions in this region, which in the limit of small amplitudes 
agree with the results obtained by Wiltonin 1915; one solution has the small ampli- 
tude behaviour of a gravity wave and the other that of a capillary wave, but the 
numerical results show that at large amplitudes both waves have the characteristics 
of capillary waves. The calculations also show that the wavenumber range in which 
two solutions exist increases with increasing wave height. 

1. Introduction 
The study of steady irrotational water waves is a classical branch of fluid mechanics 

that has received a considerable amount of attention. The early investigations of the 
nonlinear behaviour of periodic irrotational water waves on deep water consisted of 
perturbation solutions that are valid when the maximum wave slope is small. Stokes 
(1847, 1880a) pioneered the field by developing perturbation expansion procedures 
for the approximate calculation of gravity waves propagating on a free surface. 
These procedures have been extended by Harrison (1909), Wilton (1915), and Pierson 
& Fife (1961) to include the effects of surface tension. 

For gravity waves Stokes’ solution shows that nonlinear waves have sharper crests 
and broader troughs compared to sinusoidal waves and that the phase speed of non- 
linear waves increases with increasing wave height. For gravity-capillary waves 
Harrison’s solution shows that the basic characteristics of Stokes’ waves are retained 
for wavenumbers less than k, = (pg/2a)t,  where p is the density, g is the acceleration 
of gravity, and u is the surface tension. However, for wavenumbers greater than this 
dividing wavenumber, the waves have the general characteristics of capillary waves; 
the wave profiles have flattened crests and sharp troughs and phase speeds which 
decrease with increasing wave height. Harrison noted, however, that his solution 
breaks down at the dividing wavenumber. Wilton independently computed a solution 
to Harrison’s problem to higher order. Additional singularities appear in the higher- 
order terms at  the wavenumbers k, = (pg/nu)*, where n is an integer greater than 
unity. Wilton also developed another perturbation solution that is valid exactly at 
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Harrison’s dividing wavenumber, which shows that two distinct waves exist with this 
wavenumber. Pierson & Fife used the method of strained co-ordinates to determine 
a perturbation solution that is valid for a small band of wavenumbers centred about 
Harrison’s dividing wavenumber. Their results show that two distinct waves exist at 
wavenumbers near the dividing wavenumber. 

In  recent years, the computer has been used to obtain more accurate information 
on the nonlinear behaviour of water waves when the maximum wave slope is not 
small. Thomas (1968, 1975) used the computer to solve an integral equation for 
gravity waves derived by Nekrasov (1921). Byatt-Smith (1970) derived another in- 
tegral equation for gravity waves, and he numerically solved this equation for the 
case of the solitary wave. Sasaki & Murakami (1973) numerically solved yet another 
integral equation for gravity waves on fluids of various depths, including the solitary 
wave. Schwartz (1974), Longuet-Higgins (1975), and Cokelet (1977) used the com- 
puter to extend the Stokes series for gravity waves to very high order. The numerical 
calculations have shown the crests of gravity waves increase in sharpness as the height 
increases until a limiting waveform is reached in which the crest is a corner enclosing 
an angle of 120°, as Stokes (1880b) conjectured. Another interesting result, originally 
due to Longuet-Higgins, is that the wave properties, such as the phase speed and the 
wave energy, are found to monotonically increase to maxima just before the wave 
reaches maximum height. Very recently, Bloor (1 978) derived an integro-differential 
equation for surface waves which includes the effects of surface tension as well as 
gravity. Although i t  appears that his equation could be used to calculate gravity- 
capillary waves, he presented numerical results only for the two limiting cases of 
pure gravity waves and pure capillary waves. 

In  the present work we introduce a new integro-differential equation that describes 
free-surface gravity-capillary waves. This equation differs substantially from that 
of Bloor, and offers advantages for the computation of periodic waves. We present 
numerical results for deep-water gravity waves, capillary waves, and gravity- 
capillary waves with wavenumbers near Harrison’s dividing wavenumber. 

2. Formulation of the problem 
Consider two-dimensional, periodic, progressive waves of wavelength A propagating 

on the free surface of a fluid of arbitrary uniform depth h. Assume that the fluid is 
inviscid, incompressible, and that the motion is irrotational. 

Define a Cartesian co-ordinate system in a reference frame in which the motion is 
steady, such that the x axis is horizontal and the y axis is perpendicular to the un- 
disturbed surface and directed opposite to the force of gravity. Take the bottom to 
lie along y = 0 and define a mean depth h such that the surface is given by y = h + ~(z), 
with the value of 7 averaged over one wavelength set equal to zero. In  this reference 
frame, define the value of the fluid speed averaged over one wavelength a t  y = 0 to 
be the phase speed c of the wave; since the motion is irrotational, the result would be 
the same for any value of y. One wavelength of the flow is illustrated in figure 1. 

Let u and v represent the components of fluid velocity in the x and y directions, 
respectively, and define the complex velocity of the flow as 

w(2) = u-iv, (1) 
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FIGURE 1. A schematic representation of the surface profile over one wavelength. 

where z = x + iy.  The problem is to determine the function w(z) that is analytic in 
the fluid region, the phase speed c, and the shape of the free surface q(x) such that the 
following boundary conditions are satisfied: 

v = o  on y = 0, 

v-uq, = 0 on y = h + q(x), 
p -po = - CTR-~ on y = h + q(x),  

where p is the fluid pressure, p o  is the constant pressure above the surface, CT is the 
surface tension, and R is the radius of curvature of the free surface. The pressure in 
the fluid at the surface is related to the fluid speed by the Bernoulli equation 

in which B is a constant. 
To obtain an integro-differential formulation of this problem, we seek to express 

the complex velocity in terms of its values on the surface. Since the complex velocity 
is analytic in the fluid region, we can use Cauchy’s integral theorem to express the 
complex velocity in the interior as an integral over its values on the boundary of the 

PIP + B(u2 + VZ) + 917 = B, ( 5 )  

fluid region, 

In  the limit as the integration path extends to infinity in the horizontal direction, the 
contributions from the two paths connecting the bottom to the surface independently 
vanish, so the non-zero contributions to this integral come from the paths along the 
free surface and the fluid bottom. The integration along the bottom can be eliminated 
by adding an image flow, which satisfies (2). Boundary condition (3) implies that on 
the free surface 

where Q is the fluid speed at the free surface and ds is the differential arc length along 
the free surface. Thus, including the image flow, (6) may be written as 

(7) 4 5 )  d 5  = PdS, 



780 

where 6 = 6 + i(h + q), 5* is the complex conjugate of 5, and 

From (4) and ( 5 )  
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r(t) = dl +$)*. 

so (8), therefore, expresses the complex velocity in the interior of the fluid region in 
terms of q and the constants of the motion. For the particular case of periodic waves, 
(8) can be expressed as 

The last step follows from Mittag-Leffler's expansion of the cotangent function 
(Whittaker &Watson 1927). 

On the surface, z, = z + i(h + q), and the integrals in (8) and (1 1)  are singular. How- 
ever, the Plemelj formulae (see, e.g., Muskhelishvili, 1953) can be employed to show 
that w(z,) is equal to twice the Cauchy principal value of these singular integrals. 
Interpreting (8) accordingly, separating its real and imaginary parts, and substituting 
these into (3), we obtain the following equation for q: 

where P stands for Cauchy principal value. Integrating this expression with respect 
to z results in the following integro-differential equation for q : 

For periodic flows, the same procedure using (1  I)  instead of (8) produces 

where k = 27rr/A and K is the integration constant. 
As a check on the validity of this formulation, approximate periodic solutions 

valid for small wave slopes were obtained for equation (13). The results were found to 
be in agreement with the existing small amplitude solutions. The details are given in 
Rottman (1978). 

Equation (14) represents an integro-differential equation by which the surface 
profile 7 is determined directly in terms of z, with the fluid depth h and the wavelength 
h appearing explicitly as parameters in the equation. In  contrast, the integro- 
differential equation of Bloor (1978) is solved for a(r) ,  where a is the local angle of 
the surface and r is a transformed position variable. In  order to evaluate the surface 
profile q(z) and determine the values of h and A, additional integrals involving a(r) 
must be evaluated. Furthermore, the integral appearing in Bloor's basic integro- 
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differential equation extends over an infinite interval, compared to the finite interval 
of (14). One advantage of Bloor's equation is that unlike (14) it  can be used to calculate 
very large amplitude capillary wave profiles for which q(z) becomes multi-valued. 

3. Numerical method 
The algorithm 

We consider here the numerical solution of the integro-differential equation for 
periodic free-surface waves on a fluid of infinite depth. For this purpose, all quantities 
are made non-dimensional by referencing all lengths to l /k and all velocities to 
( g / k ) t .  The resulting non-dimensional parameter is d = d?/pg.  Thus, taking the 
limit of (14) as h tends to infinity gives 

where 
and K ,  is a constant. 

form 

~ ( 5 )  = (c2 + 28R-1- 27)4 (1 + $)*, (16) 

Since r] and y are periodic functions of period 2n, (15) can be written in the 

cq(z) = - [y(x - 7 )  In {cosh [r](x) - r](z - T)] - cos 7} 
277 s" 0 

+y(z+~)ln{cosh [q(x) -?,?(x+T)] -cos7}]d~+K,, (17)  

which conveniently places the singularity in the integrand at the lower limit of inte- 
gration. The integrand has a logarithmic singularity at  T = 0. This is made clearer by 
expanding the integrand for small 7 ;  the result is 

2y(z) In [+( 1 + 7:) T ~ ] +  0(+ 1117). (18) 

The singularity can be subtracted out of the integrand using the result 

so that equation (17) can be written as 

[ ~ ( x  - 7) In {cosh [q(z) - r](z - 7) ]  - COST} 
0 

+ y(s + 7 )  In {cosh [r](x) - r](x + T)] - cos 7 }  - 2y(x) [In $( 1 + 7:) T ~ ] ]  d7 

+ y ( 4  {In [+(I+  79) n21 - 2) + K,. (19) 

Although the integrand is now finite on (O,n), not all of its derivatives are finite a t  
7 = 0; this fact has important implications for the error analysis to be carried out later. 

To obtain a numerical solution of (19) we determine r ]  at N equally spaced points 
on the interval (0, n). Denoting these points by 

x i = ( i - l ) A ~ ;  7 j = ( j - I ) A 7 ;  i , j=  1 ,2  ,..., N ,  

where Ax = AT = n / ( N -  I), and, letting qi = r](z{) and yi = y(xi), we approximate the 
integral in (19) by Simpson's rule and the derivatives by fourth-order difference 
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formulae. Then N + 2 nonlinear algebraic equations for the N + 2 unknowns q5, C, 

and K ,  result from (19) together with the requirement that the mean value of q be 
zero and the requirement that the wave height (or some parameter related to the 
wave height) have a fixed value. 

There are many numerical techniques for solving this type of problem, and it seems 
that experimentation is the only means for determining which method is best for 8 

particular system. We found that the Newton-Raphson iteration method for a 
system of equations worked well. Schematically, the numerical procedure is aa 
follows. 

Let the N + 2 equations to be solved be represented by 

Fi(yi)=O; i , j= 1 , 2  ,..., N , N + l , N + 2 ,  (20) 

where for notational convenience we have defined qN+l = c and vN+z = K,. The first 
step is to approximate the vr’s; this is done by using a perturbation solution or by 
using a previously computed profile which is near the desired solution. Denote this 
first approximation by a superscript zero, @), and denote the residual by E,; that is 

Assuming that the Ei are small, corrections to the Q$”) are found by expanding I( in 
a Taylor series about vjo) : 

After setting Fi equal to zero, the resulting linear system of equations (22) is solved 
for the corrections Ayi. Thus the new approximation is yy) = @) - ATi. This procedure 
is then repeated until the Ei’s are reduced in absolute value to some prescribed toler- 
ance. For the calculations done here, this tolerance is 10-8. 

In  all of the calculations presented here, the assumption is made that the waves 
are symmetric about a vertical plane passing through their crests, so that only one 
half-wavelength of the wave profile is actually computed. Levi-Civita (1925) proved 
the existence of steady irrotational gravity waves that have this property, and the 
exact result of Crapper (1957) shows that capillary waves are also symmetric. 

After the solution is obtained, the integral properties, such as the mean kinetic 
energy per unit area T, the mean gravitational potential energy per unit area V ,  and 
the surface energy per unit area 8, are computed using Simpson’s rule. These quantities 
are given by 

and 

Error analysis and extrupolation 

Fox (1967) derived an expression for Simpson’s rule, with correction terms appropriate 
for an integrand with discontinuous derivatives at  the lower limit of integration. 
Contrary to the expression for smooth integrands, the dependence of Fox’s correction 
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terms on the interval length, AT, is a function of the integrand. For the integrand in 
(19), the correction formula has the form 

A ( A 7 ) 3 + B ( A 7 ) 4 + C ( A ~ ) S l n  (AT) + D ( A T ) ~ +  ..., (26) 

where the coefficients A ,  B, etc. are independent of AT. For our finite-difference 
approximation to the derivatives we can expect the largest error to be of order  AT)^. 
Therefore, we estimate that the error in our calculations is approximately given by 

e -N A ( A T ) ~  + B ( A T ) ~ .  (27) 

The approximate error can be computed by solving equation (19) for three different 
step sizes (AT) and using these results to determine A ,  B, and the extrapolated solu- 
tion. This procedure is simply Richardson’s extrapolation, and it was used to achieve 
the accurate numerical results presented in the next section. 

Some identical calculations were made on a CDC 3600 computer and on a CDC 7600 
computer with identical results. Since the latter computer has approximately 36 yo 
greater single precision accuracy than the former, this indicates that the round-off 
error in these calculations is insignificant. 

4. Numerical results 
Gravity wave8 

We are now in a position to compute the solution for periodic gravity waves. Our 
results will be compared with those of Cokelet (1977), whose summation of large-order 
perturbation series was facilitated by the use of Pad6 approximants, a technique in- 
troduced into water wave theory by Schwartz (1974). Our calculations serve both to 
verify the accuracy of the present computational technique and to confirm the validity 
of the use of Pad6-approximant techniques in water wave problems. 

For these calculations we use the following convenient parameter introduced by 
Cokelet: 

2 2  
€2 = 1 - qccreetqtrough 

c4 * 

This parameter approaches zero as the gravity wave amplitude approaches zero, and 
monotonically increases to unity as the wave increases to maximum amplitude. 

To estimate the error and to carry out Richardson’s extrapolation as discussed in 
the preceding section, each wave profile was computed for three different step sizes, 
AT. It was found, for wave heights for which e2 < 0.95, that sufficient accuracy is 
obtained by dividing the half-wavelength into 48, 72, and 96 equal intervals for the 
three computations. For wave amplitudes for which c2 2 0-95, the number of inter- 
vals was increased to 60, 90, and 120 for the three calculations. This ensured that the 
wave speed was computed to five-place accuracy up to e2 = 0.98. The accuracy of the 
calculation degraded quite rapidly for e2 > 0.98, as the curvature near the crest be- 
comes very large. 

The numerical procedure converged very rapidly, taking at  the most four itera- 
tions, for all wave amplitudes up to e2 = 0.999. The average execution time for 
computing one profile was approximately 90 seconds on a CDC 3600 computer and 
6 seconds on a CDC 7600 computer. 
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€8 C c (Cokelet) 

0.900 
0.920 
0.940 
0.950 
0.960 
0.970 
0.980 
0.990 
0.999 
1-000 

1.09094 
1.09202 
1.09272 
1.09290 
1.09295 
1.09288 
1.09268 
1.0924 
1.0919 
- 

1.09094 
1-09202 
1.09272 
1-09290 
1.09295 
1.09287 
1.09266 
1.09238 

1.0922 
- 

TABLE 1. The phase speed c of gravity waves as a function of the parameter e8. The second 
column contains the c values obtained from the present calculation, whereas the third column 
contains the values calculated by Cokelet (1977). 

As an example of Richardson’s extrapolation procedure we consider the wave speed 
for e2 = 0.98. The three values of the phase speed calculated for Arl = n/6O, 
Ar2 = n/90, and Ar3 = n/ 120 are used to give the following three equations involving 
A ,  B, and c:  

c = 1.092534 + A(AT, )~  + B(AT,)~ ,  

c = 1.092585 + A(AT, )~  + B(AT,)~,  

c = 1.092629 + A(AT, )~  + B ( A T ~ ) ~ .  

Solving these equations we find A = 4.521, B = - 67.110, and an extrapolated wave 
speed c = 1-09268. This extrapolated c differs by e = 0.00005 from the c value cal- 
culated using Ar3, and by only 0.00002 from the value c = 1-09266 calculated by 
Cokelet (1977). 

The extrapolated values of the phase speed obtained for values of e2 in the range 
0.90 < e2 < 1-00 are given in the second column of table 1.  The third column contains 
the values obtained by Cokelet (1977) using Pad6 approximants. The largest differences 
between the two calculations are at the wave heights very near the maximum wave 
height where, as has already been pointed out, the present calculation shows substan- 
tial numerical error. In  any case, the maximum difference in the two calculations is 
only about 0.03 yo of the total variation of c.  

Similar agreement was obtained for the wave profiles, and for the calculated values 
of the kinetic and potential energies; see Rottman (1978). 

Capillary waves 
The numerical scheme of $ 3  was applied to the case of a capillary wave, with the 
linear capillary phase speed used for nondimensionalization purposes. Execution 
times and convergence rates were similar to those for the gravity wave case. The 
numerical procedure, using a maximum of 120 intervals, could easily compute wave 
profiles for all amplitudes up to H / h  = 0.5. Beyond this wave height the numerical 
procedure showed difficulty in approximating the steep slopes. In  fact, at  amplitudes 
somewhat greater than H / A  = 0.5, an infinite slope appears in the wave profile and 
q(z) becomes multi-valued, which is a situation that cannot be handled by our com- 
putational procedure. The theoretical maximum height is H / h  = 0-73, which corres- 
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HIX 
FIGURE 2. The calculated values of the kinetic energy (m) and the surface energy (A) of capil- 
1 q  waves aa functions of the wave height, compared with the exact results (solid lines) of 
Crapper (1957). 

ponds to a bubble of air being pinched off in the narrow trough of the capillary wave 
(see Crapper, 1957). 

The computed phase speed showed excellent agreement with Crapper’s solution, 
with seven-place accuracy being achieved for H l h  < 0.4. In  contrast to the gravity 
wave case, the capillary phase speed decreases with increasing amplitude for all 
amplitudes. Rather than presenting the phase speed results (for which Crapper has 
given a simple exact formula), we choose to present our results for the kinetic and 
surface energies because, as far as we know, these calculations have not been pre- 
viously presented. Figure 2 shows our computed kinetic and surface energies, com- 
pared with values (solid lines) calculated directly from Crapper’s solution by the 
numerical evaluation of integrals ( 2 3 )  and (25). In  addition to illustrating the accuracy 
of our numerical method, the figure shows that the surface energy exceeds the kinetic 
energy at finite amplitudes. This is in contrast to the gravity wave case, where for 
finite amplitudes the kinetic energy exceeds the gravitational potential energy. 

Gravity-capillary waves 

The preceding subsections have shown that nonlinearity has nearly opposite effects 
in the two limiting cases of gravity waves (5+ 0) and capillary waves (a+ a). There- 
fore, it  is interesting to see how these effects are exhibited in a wave where the effects 
of gravity and surface tension are of approximately equal importance. In  the linear 
theory of gravity-capillary waves, the phase speed has a minimum at the wave- 
number for which 5 = I ,  and Kelvin (1910) suggested that this wavenumber should 
be considered the dividing line between capillary-like waves (waves in which surface 
tension effects dominate over gravity effects) and gravity-like waves. However, the 
existing higher-order theories for gravity-capillary waves indicate that the wave 
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corresponding to 3 = 1 is really more of a capillary-like wave. Our calculations 
(Rottman 1978) confk-m the fact that the 5 = 1 wave is capillary-like; namely, the 
wave profile has narrow troughs and broad crests, the phase speed is a monotonically 
decreasing function of wave height, and the surface energy exceeds the gravitational 
potential energy at finite amplitudes (also, the sum of the surface and gravitational 
potential energies exceeds the kinetic energy). 

Gravity and surface tension effects are of approximately equal importance a t  the 
singular point B = $. The perturbation analysis of Wilton (1915) predicts two distinct 
solutions at  B = $, one solution being a gravity-like wave and the other solution being 
capillary-like. In  the remainder of this section our numerical scheme will be used to 
examine the nature of the gravity-capillary wave solutions in the vicinity of B = 4. 

The method of extrapolation and error analysis is the same as that used in the 
previous section on gravity waves. The convergence rates and execution times were 
also found to be similar to the gravity case. In  all of these calculations, 120 was the 
largest number of intervals used. 

For our calculations near B = 4 we consider the gravity-like wave first. The pro- 
cedure adopted for computing these waves was to initially compute the waves for 
which B = 0.42, which is approximately half-way between the first two singular 
points located a t  5 = 4 and 4, using the approximate solution of Harrison (1909) to 
start the calculations. Next, the value of 5 was increased and the previously computed 
results were used as initial approximations for calculating the waves a t  this new value 
of 8. This procedure was then repeated until a value of B was reached a t  which, as it 
turns out, the wave became indistinguishable from a wave half the wavelength; that 
is, the wave disappears at  a small distance (which increases with wave height) to the 
large wavenumber side of the singular point. This disappearance occurs when the 
amplitudes of the fundamental and all odd multiples of the fundamental become zero, 
leaving a wave which is identical to a capillary-like wave of twice the (disappearing) 
fundamental wavenumber. This process is described in more detail below. 

Figure 3 shows the wave profiles computed a t  B = 0.50. The smallest-amplitude 
profile has the gravity-wave characteristic of narrower crest than trough, but, as the 
wave height increases, a local maximum appears in the trough. Thus, the profile 
exhibits two local minima per wavelength. The trough tends to sharpen as the wave 
height increases. In  contrast, the crest tends to flatten with increasing wave height 
so that the larger amplitude waves look like capillary waves with a bump in their 
troughs. Similar statements can be made about waves that were computed at B = 0.42 
and 0.58. Also, we note that the maximum wave height we can compute increases as 
8 increases. 

Figure 4 is a plot of the phase speed versus wave height for the three values B = 0.42, 
0.50, and 0.58. Also included in the plot are the phase speeds computed from the 
second-order perturbation solution of Pierson & Fife (1961). The numerical results 
show the phase speed increasing for small wave heights but then reaching a maximum 
and declining for larger wave heights. The perturbation results predict that the phase 
speed only increases with wave height. The maximum in the phase speed seems to 
occur a t  slightly larger wave heights for larger values of 5 but in all cases it is close to 
H / h  = 0.05, which indicates that the perturbation solution is valid for very small 
amplitudes only, It also appears that the perturbation solution, even for small ampli- 
tudes, is only accurate near B = 0.50. The decreasing of the phase speed with large 
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FIGURE 3. Surface profiles of the wave that is gravity-like for small amplitudes, with 
I? = 0.50, and H / h  = 0.02, 0.05, 0.10, and 0.13. One half-wavelength is shown. 
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FIUURE 4. The phase speed aa a function of the wave height for waves that are gravity-like a t  
small amplitudes. The present results (0 )  are compared with the approximate solutions (solid 
lines) of Pierson & Fife (1961). The dashed lines are spline fits to the present results. 

wave heights is in agreement with the earlier observation that these waves are gravity- 
like for small wave heights, and more capillary-like for larger wave heights. 

The wave energies versus the wave height for B = 0.50 are plotted in figure 5 .  The 
results computed for B = 0.42 and 0.58 are very similar to these results. This plot 
indicates, again, that these waves have the large amplitude behaviour of capillary 
waves; the surface energy exceeds the gravitational potential energy (and the sum 
of the surface and gravitational potential energies exceeds the kinetic energy for large 
wave heights). 
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FIQURE 5. The calculated values of the kinetic energy (w), surface energy (A) and gravitational 
potential energy (0 )  as functions of the wave height, calculated at 5 = 0.50 for a wave which 
is gravity-like at small amplitudes. The dashed lines are spline fits to the present results, and 
the solid line is the sum of the surface and gravitational potential energies. 
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FIUURE 6. Surface profiles for the wave which is gravity-like at small amplitudes, calculated 
for H / h  = 0.01 and various values of 5.  The dashed line represents the profile for both 8 = 0.545 
and 5 = 2.18. 

The behaviour of these waves with 6, for two fixed wave height to wavelength 
ratios, H / h  = 0.01 and 0.10, is shown in figures 6 and 7. There are two results to be 
noted from these plots. First, as 6 increases, the local maximum at the trough in- 
creases in magnitude and broadens in width such that the wave-form approaches that 
of a capillary-like wave with one-half the wavelength. That is,in figure 7, for example, 
as B -+ 0.85, the computed profiles approach the shape of the capillary-like wave (of 
the same wave height) for which 6 = 4 x (0.85) = 3-40, since 6 is proportional to the 
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FIQTJRE 7. Surface profiles for the wave which is gravity-like at small amplitudes, calculated for 
H / h  = 0.10 and various values of c?. The dashed line represents the profile for both B = 0.85 
and 8 = 3.4. 

square of the wavenumber. Because it is difficult to control to which solution of two 
very similar solutions the iteration procedure will converge, we cannot determine 
the merger point with great precision; therefore, 3 = 0.85 is only an estimate of the 
merger point. The second result is that the value of B for which this merger occurs 
increases with increasing H l A ;  the merger occurs very close to B = 0.545 for H / A  = 0.01 
but for H I A  = 0.10 the value of B is very close to 0.85. Therefore, for large HIA,  the 
range of 3 for which two distinct periodic waves exist is quite large. 

The perturbation solution of Pierson & Fife suggests the behaviour described in 
the previous paragraph, although their solution is not quantitatively correct except 
for very small amplitudes and very close to B = 0.50. 

The capillary-like wave was handled in very much the same way as the gravity-like 
wave. The calculation was started by using Harrison’s approximate solution at 
B = 0-58 as the initial guess for the iteration procedure. Solutions were then found for 
progressively smaller values of 5 in a manner similar to that described for the gravity- 
like wave. 

Figure 8 shows the free surface profiles computed at 17 = 0.50. These profiles have 
the general appearance of capillary waves, except that small depressions appear in 
the crests. Similar profiles were computed at  B = 0.42 and 0.58. The depressions in the 
crests are small but increase in magnitude as B decreases. Also the maximum H / A  
that we are able to compute decreases as B decreases. 

Figure 9 is a plot of the computed speed versus wave height for the capillary-like 
wave compared with the phase speed computed from Pierson & Fife’s approximate 
solution for the same three values of 3. The phase speed is seen to be a decreasing 
function of wave height in all three cases. Again, Pierson & Fife’s solution appears 
to be accurate only for small amplitudes and close to B = 0.50. 

The wave energies versus the wave height for B = 0.50 are plotted in figure 10; 
results calculated for B = 0-42 and 0-58 are very similar. The surface energy exceeds 
the gravitational potential energy at all wave heights. 

The behaviour of these waves with 3, for two fixed wave height to wavelength 
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FIGURE 8. Surfaoe profiles of the capillary-like wave, with B = 0.60, and 
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results (0 )  are compared with the approximate solutions (solid curves) of Pierson & Fife (1961). 
The dashed lines are spline fits to the present results. 
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FIGURE 10. The calculated values of the kinetic energy (m), surface energy (A) and gravita- 
tional potential energy (0 )  as functions of the wave height, calculated at 5 = 0.50 for a 
capillary-like wave. The dashed lines are spline fits to the present results, and the solid line is 
the sum of the surface and gravitational potential energies. 
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FIGURE 11. Surface profiles for a capillary-like wave, calculated for H / h  = 0.01 and various 
values of 8. The dashed line represents the profile for both 8 = 0.455 and B = 1.82. 

ratios, H / h  = 0.01 and 0.025, is shown in figures 11 and 12. The results are analogous 
to the gravity-like case; the depression in the crest increases in magnitude and broadens 
in width as B decreases to the point where the waveform becomes indistinguishable 
from a capillary-like wave of twice its wavenumber. Note that the larger amplitude 
waves extend to smaller B values than the smaller amplitude waves. In particular, 
observe that the wave for which H / h  = 0.025 exists as a distinct wave down to near 
the next singular point, B = 4. 
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FIQURE 12. Surface profiles for a uapillary-like wave, calculated for H / h  = 0.026 and various 
values of 8. The dashed line represents the profile for both 3 = 0.326 and B = 1.3. 

5. Conclusions 
We have derived an integro-differential equation that describes gravity-capillary 

waves and that is convenient for numerical calculations. 
For periodic gravity waves OUT numerical calculations verify the maxima in the 

phase speed and wave energy found by Longuet-Higgins (1975) and Cokelet (1977), 
who used Pad6 approximants. 

The two gravity-capillary wave solutions found by Wilton (1915) and Pierson & 
Fife (1961) have been shown to have primarily capillary wave characteristics at large 
wave heights. Our calculations have also shown the approximate size of the wave- 
number band for which two waves can exist; the size of the band increases with 
increasing wave height to wavelength ratio. The wave which is gravity-like at small 
amplitudes disappears at the large wavenumber end of the band, and the capillary- 
like wave disappears a t  the small wavenumber end. The mechanism by which the 
waves disappear is that the amplitudes of the fundamental and all odd multiples of 
the fundamental of the wave profile vanish, leaving a wave, in both cases, that is 
identical to a capillary-like wave having twice the wavenumber of the (disappearing) 
fundamental. 
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